Exploiting Friction in Torque Controlled Humanoid Robots

نویسندگان

  • Gabriele Nava
  • Diego Ferigo
  • Daniele Pucci
چکیده

A common architecture for torque controlled humanoid robots consists in two nested loops. The outer loop generates desired joint/motor torques, and the inner loop stabilises these desired values. In doing so, the inner loop usually compensates for joint friction phenomena, thus removing their inherent stabilising property that may be also beneficial for high level control objectives. This paper shows how to exploit friction for joint and task space control of humanoid robots. Experiments are carried out using the humanoid robot iCub.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balancing of humanoid robot using contact force/moment control by task-oriented whole body control framework

Balancing control of humanoid robots is of great importance since it is a necessary functionality not only for maintaining a certain position without falling, but also for walking and running. For position controlled robots, the force/torque sensors at each foot are utilized to measure the contact forces and moments, and these values are used to compute the joint angles to be commanded for bala...

متن کامل

Implementing Torque Control with High-Ratio Gear Boxes and Without Joint-Torque Sensors

This paper presents a complete framework (estimation, identification and control) for the implementation of joint-torque control on the humanoid robot HRP-2. While torque control has already been implemented on a few humanoid robots, this is one of the first implementations of torque control on a robot that was originally built to be position controlled (iCub[1] and Asimo[2] being the first two...

متن کامل

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

Balancing and Walking Control for a Torque-controlled Humanoid Robot

Samsung Electronics Co., Ltd. has been developing humanoid robots for years. Roboray, the latest developed humanoid robot in Fig. 1, has many different characteristics from the previous robots, e.g. Mahru series [1]. The main difference is that Roboray can be torque-controlled with torque sensors at all joints in the lower limbs. There exist some released biped robots which have torque/force co...

متن کامل

Push Recovery of a Position-Controlled Humanoid Robot Based on Capture Point Feedback Control

In this paper, a combination of ankle and hip strategy is used for push recovery of a position-controlled humanoid robot. Ankle strategy and hip strategy are equivalent to Center of Pressure (CoP) and Centroidal Moment Pivot (CMP) regulation respectively. For controlling the CMP and CoP we need a torque-controlled robot, however most of the conventional humanoid robots are position controlled. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018